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Abstract. This paper describes research that is performed
in the course of a project where a methodology for providing
user support for KDD processes plays a central role. Although
methodologically we aim at supporting the whole process of
applying inductive learning techniques, the current paper fo-
cussus on a part of this process. The main issue in this pa-
per is the support of data preprocessing for KDD. We give
some insights in the metadata we calculate from a dataset
as part of the method for user support. DCT (Data Char-
acteristion Tool) is implemented in a software environment
(Clementine). Some examples are given that resulted from
running the UGM/DCT (User Guidance Module combined
with DCT) on the data.

1 Introduction and Motivation

As a result of its increasing popularity, an increasing number
of machine learning applications were implemented. The more
such applications were discussed the more it became clear that
applying inductive algorithms is not as trivial as it sometimes
might look. The setting in which algorithms are immediately
tested on (clean) datasets clearly is too academic and not
realistic in real world applications (a �nding that is also re-
peated at workshops on this topic and in literature, see e.g.
[4], [11]). Several experiences show that up to three quarters
of the time might be used for transforming the data at hand
in a format appropriate for learning and that this process has
signi�cant in
uence on the �nal generated models. It was only
natural that from such experiences and the fact that many al-
gorithms are in principle applicable in various situations, the
idea arose to partially automate the support of algorithm se-
lection. Such an approach can also be found in statistics, as
described in [6] and projects like StatLOG project [9], and the
MLT-approach [1] where the CONSULTANT [2] played an ad-
visory role. A very important contribution of that research is
that it noti�es the importance for a support in de�ning ap-
plication processes where statistical and inductive techniques
are involved. An issue related to that of algorithm selection is
that of data preprocessing. But at the same time we noticed
that selecting a �nal appropriate algorithm for the problem at
hand depends more on the e�ort one wants to put in prepro-
cessing the data than anything else. In the next sections we
discuss how knowledge about data can in
uence user support
for machine learning, shortly describe which characteristics
are used, and give some examples of preprocessing support.
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2 Data Preprocessing for Data Mining

Cases where data is used for Data Mining directly without
any kind of preprocessing are so rare (we are not aware of
such cases) that data preprocessing seems to constitute an
obligatory step. This step is at the same time one of the more
time consuming steps, and changes made to a dataset dur-
ing preprocessing can bring a solution to a KDD problem
nearer or just further away. Support for data preprocessing
is provided as part of a more general architecture for user
support that is described in several papers (UGM approach:
[3], [5]). As part of the project, the UGM approach is imple-
mented on top of Clementine (ISL) and has the advantage
that it supports generation of KDD processes besides docu-
mention and reuse aspects of KDD projects. The approach
helps a user de�ning his problem, after which a top down
selection of possibly applicable learning algorithm groups is
made. According to the knowledge about the preconditions
of these algorithms, an analysis of the available data is made.
Based on this knowledge (problem as well as data characteris-
tics are known), preprocessing advice is de�ned. The current
implementation aims at analysis and implementation of tech-
niques for division of multidimensional data spaces according
to the distribution of a concept in such a space as done for
classi�cation and prediction tasks. Data preprocessing mainly
in
uences data in one of three directions:

� Data cleansing (treatment of noise, extreme values, redun-
dancy, etc.)

� Altering the dimensionality of the data (by attribute gen-
eration, �ltering, transformation, etc.).

� Altering the data quantity (by selecting, sampling, balanc-
ing the available data records).

Where the former is not supported (we presume a cleansed
data warehouse to be available), several techniques that sup-
port preprocessing in the last two directions are implemented.
Thereby we aim at providing as much support as possible, al-
though one should realize that being complete is hardly pos-
sible.

3 Measures for Characterisation of Data
Sets

This section describes the techniques that are used for char-
acterisation of datasets, where some measures are indepen-
dent of our focus on statistical classi�cation. Besides statis-
tical measures the DCT approach also includes information
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theoretical measures for dealing with discrete attributes such
as:

- Attribute entropy, describing the information contained
in a certain (discrete) variable,

- Class entropy, describing information contained in the
dependent variable,

- Joint entropy, relates the depending variable to one of
the indepent variables. This measure is usually meant
to get an insight in the relative importance of discrete
attributes in classi�cation problems.

- Several heuristics that we calculated in order to estimate
the degree of agreement among the measures. We took a
relevance measure, information gain, the Gini index and
the g-function for our experiments.

However, due to space restrictions in this section we will con-
centrate on statistical measures.

3.1 Standard Characteristics

Some characteristics of data can be seen as standard, and are
easily calculated from a dataset and are relevant for either

q : Number of classes
n : Number of examples
ni : Number of examples in class i
p : Number of variables
num : Number of variables with numeric data type
sym : Number of variables with symbolic data type

Using these characteristics one can get a �rst indication of
the complexity of the problem by analysing these indicators.
When a large number of variables is symbolic one would rather
concentrate on information theoretical characteristics (as in
[9]). We concentrate on the opposite case, in which many inde-
pendent variables are numeric. The next measurements that
are calculated are location and dispersion parameters that are
only computable as single dimensional measurements. Loca-
tion parameters are measurements like minimum, maximum,
arithmetic middle, median, �-trimmed mean and empirical
quantiles, where dispersion parameters provide measurements
that indicate the dispersion of values the variable can have.
Note that location parameters can be divided in two classes,
those who can deal with extreme values and those that are
sensitive to them. In Data Mining it really depends on the
problem de�nition whether one wants to take one group or
the other. This is easily seen, there is for example no need
for calculation of robust measures where the goal is to �nd
interesting and unexpected values in the data. Such measures
that are resistant against extreme values might just cover up
interesting knowledge.
Dispersion parameters that are calculated include standard

deviation (sensitive to extreme values), quartiles deviation
(less sensitive to extreme values) and median deviation.

3.2 Assumption Testing

An appropriate technique for prediction of complexity of a do-
main and relevance of independent variables is discriminant

analysis (see [8] for a good introduction). Discriminant Anal-
ysis has as one of its purposes to provide one or more mathe-
matical equations in order to separate a data space. This set
of equations can be used in order to classify as well. Since we
also deal with classi�cation tasks in quantitative domains, our
idea is that when performing a classi�cation task on numerical
data in Data Mining measurements from discriminant anal-
ysis might be used in order to provide indicators that point
to certain preprocessing steps for the data. As basis for DCT,
the assumptions of discriminant analysis are taken:

1. Linear independence of the discriminating variables
2. Multivariate normal distribution of the discriminating vari-

ables
3. Equal covariance matrices for all classes

Now these assumptions can be tested, whereas some tests de-
liver more useful measurements as strictly necessary. A useful
technique that we used here is the Multiple Correlation coef-
�cient.

De�nition 3.1 (Multiple Correlation coe�cient) The
Multiple Correlation coe�cient �R1;2;::: ;p between X1 and vari-
ables X2; : : : ;Xp is the maximal correlation between X1 and
some linear function �0X2 of X2; : : : ; Xp where � 2 IRp�1.

�R1;2;::: ;p :=

r
�0

12�
�1
22 �12

�11

Let X1; : : : ;Xn 2 IRp be n independent observation of
the randomvector X. The Sample Multiple Correlation Co-
e�cient between variable 1 and the other p � 1 variables is
de�ned as

R :=

r
s0
12
S�122 s12

s11
;

where S = 1
n�1

Pn

i=1
(Xi� �X)(Xi� �X)0, S =

�
s11 s012
s12 S22

�

and s11 2 IR and s12 2 IRp, is the sample covariance matrix.

This test enables us to provide the user with a dataset that
is non redundant. Depending on which variables are de�ned as
important to the user (a user might manually include variables
in the UGM), the set of variables is then shrinked. The lost
variables are reconstructible in case of total correlation, while
the complexity of the inductive task decreases.

3.2.1 Test on Multivariate Normal distribution

Linear discrimination has as assumption that the independent
variables show a multivariate normal distribution.
For testing on normal distribution, usually simple mea-

sures like kurtosis and skewness are taken. However, both
these measures are not robust and distributions exists that,
although they do not show a normal distribution, are incor-
rectly recognised as having one. Another problem is that in
the above mentioned case kurtosis and skewness tests do not
deliver information on why the assumption of normal distri-
bution is rejected. A robust test on normal distribution is pro-
vided by the BHEP-test2, and is for this purpose implemented

2 See [7] for a thorough description of the BHEP-test.
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in our system. This BHEP test has a few test properties that
make it more suitable on real world datasets as the other dis-
cussed alternative: a�ne invariance, consistency against every
non-normal distribution, applicable on datasets of every size
and dimension.
In order to test for homogeneity among the independent

variables we use the Boxian M-statistic, while this statis-
tic seems to deliver a good estimation of homogeneity. M-
statistics basically tests the hypothesis that all classes posses
the same covariance structure and has an asymptotical chi-
square distribution. From M-statistics the SD-ratio is calcu-
lated, which basically means that a transformation is per-
formed which delivers a real that is equal to unity when all
individual covariance matrices are equal.

4 Estimating Space Complexity for
Classi�cational Problems

In Discriminant Analysis several covariance matrices are cal-
culated in order to be able to determine 'eigenvalues' and
eigenvectors. The covariance matrices that we calculate are
not di�erent from the ones known from ordinary statistics, we
will therefore only mention which matrices we calculate. First
of all we calculate the covariance matrix of each class i and
the pooled covariance matrix (over all classes) Furthermore
we calculate the within-groups sums of squares and cross-
products matrix (W). Matrix (T) recollects the total sums
of squares and cross-products matrix. From these both we
retrieve B=T-W. Here matrix (B) represents the between
groups sums of squares and cross-products matrix. This gives
us an estimation of how di�erent the several groups really are.
Covariance matrices are used to calculate eigenvalues and

eigenvectors of matrix W�1B. The motivation to use W�1B

stems from the wish to maximize the ratio between the el-
ements of matrix B to the elements of matrix W. Since
our restriction is that we aim at applying the chosen tech-
niques on real world datasets, we have chosen the so called
QR-algorithm [10], since this algorithm is resistant against
non symmetric covariance matrices, whereas other algorithms
(like the JACOBI algorithm) are only able to calculate valid
eigenvalue i� the covariance matrices are symmetric. Since
W�1B is positive de�nite with order r = min(q � 1; p),
�max = �1 � �2 � : : : � �r positive eigenvalues with the
belonging eigenvectors bmax = b1; : : : ; br can be de�ned.
The larger such an eigenvalue, the larger is the role the be-
longing discriminant function plays in the �nal classi�cation.
The number of signi�cantly positive eigenvalues gives us a �rst
insight in how many dimensions might be needed in order to
be able to distinct the classes from one another. We also pro-
vide the relative importance of each eigenvalue according to
the Total Discrimination Power (TDP). The relative impor-
tance of the most important eigenvalue (an indication for the
importance of the 1st discriminant function) is also provided.
Next we provide the canonical correlation, which is a value

that (if close to unity) tells us that there is a strong connection
between the classes and the 1st discriminant function. This
function is de�ned as:

FirstCanonicalCorrelation =

r
�max

1 + �max

:

Note that although the 1st discriminant function might be

the strongest (as seen by the most important eigenvalue),
the canonical correlation might show that the relation to the
classes is only a weak one. In this case we are not likely to
be able to make a good prediction with the current dataset
when using linear discriminating methods. The next measure
we calculate is Wilks Lambda (also known as U-statistic).
Wilks Lambda is a multivariate measure of group di�erences
(over the independent variables). It is de�ned as follows:

� = �r
j=1(1 + �j)

�1

where �j are the eigenvalues that are greater then zero men-
tioned before and r is the number of positive eigenvalues.
Wilks � is used as follows: if the value of Wilks � is near 1,
the groups centres are identical, and while there are obviously
no group di�erences, the discrimination is bad. On the other
hand, given a value for Wilks � near zero, the group centres
are really distinctive, and a good discrimination can be found.
Now we are interested in a measure that can support us

in deciding upon the number of signi�cant discriminant func-
tions that should be considered. Bartlett's statistic is calcu-
lated, which is applicable in the case that the assumption of
multivariate normal distribution holds. Bartlett's statistic has
an asymptotic �2p(q�1)-distribution and is de�ned as:

V = f(n � 1)�
1

2
(p+ q)g

rX
j=1

ln (1 + �j)

I� V is larger than the critical value of this �2-distribution
with p(q�1) degrees of freedom, then all r discriminant func-
tions can be treated as relevant. This statistic delivers the
discriminant functions that are relevant by repeatedly retract-
ing the most important discriminant function from V , after
which this function is deleted from the ordered list with sig-
ni�cances of the discriminant functions. The relevance of a
single discriminant function j is calculated through:

Vj = f(n � 1)�
1

2
(p+ q)g ln (1 + �j)

with an asymptotic �2p+q�2j -distribution.
Based on the statistics mentioned above, several kinds of

support could be de�ned. For example, there is the possibil-
ity to make statements about the kind of algorithms that one
wants to use. In the case that the Canonical Correlation and
the relative proportion of an eigenvalue to the Total Discrimi-
nating Power is close to 1, algorithms that are able to describe
linear relations should be favoured, whereas in case the rela-
tive proportion of an eigenvalue is large where the canonical
correlation is near zero (no real relation to the classes), then
one would prefer to look at the information gain measures,
since algorithms that are able to describe linear relations are
less applicable. At the same time, the calculated measures
provides insight in the complexity of a problem, which might
either give rise to certain data preprocessing steps in order
to allow a better depiction of the complex space on a lower
dimensionality.

5 Examples of Advice for Preprocessing
based on DCT

We took UCI-datasets in order to demonstrate our hypoth-
esis that the data characteristics as we took them are suf-
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icovariance matrix class

standard stats

BHEP-statistic/critical value

Pooled (total) covariance matrix

iff multivariate normal distribution

SD-ratio

M-statistic

Pooled (total) covariance matrix

Within Groups Covariance matrix (W)

W(inv)B Matrix

Multiple Corr.Coeff.

assumptions fulfilled

Eigenvalues and eigenvectors

relative importance of  largest eigenvalue

V-statistics (Bartlett) Canonical Correlation

Between Groups Covariance matrix (B)

Figure 1. Used measures and their relations

Range: Median Mean �-trimmed Mean Std. Dev. Quartil

vegde-sd: 991,719 0,833 5,709 1,25 44,837 1,451
hegde-sd: 1386,33 0,963 8,244 1,683 58,799 1,763

...
...

...
...

...
...

...

Table 1. Values for several of the "standard statistics" of two independent variables (Segment)

�cient for de�nition of certain preprocessing steps. We will
deal with some of the calculated measurements w.r.t. these
datasets and show that there is a possibility to make state-
ments about which preprocessing is appropriate, or which
kind of algorithms can be used. For every dataset we also
made a testrun using several data mining techniques, so we
could verify whether our assumptions about the interpreta-
tion of the characteristics was right or not.

5.1 Example: Segment

The used dataset originates from 7 outdoor images that where
divided in 3x3 regions and classi�ed according to their mem-
bership of one of 7 classes. Each region forms an instance
that is described by 19 numerical variables. Three of these 19
variables are eliminated while containing constant variables
which do not contain any information that might contribute.
Table 1 shows the generated output for the variables vegde-sd
and hegde-sd. The di�erence between the arithmetical mean
and the �-trimmed mean3we see that these variables might
su�er from extreme values quite a lot. This view is supported
by the range, standard deviation and quartile distance as dis-
persion measures. The information that is gathered in the last
three measures is based on a di�erent quantity of extreme val-

3 The �-trimmed mean basically cuts the 2*� percent extreme
values of a variable away. � is set to 5 percent in our example.

ues that is neglected which gives us feedback on the number
of such extremes that is present in a certain variable.
The output for the Multiple Correlation Coe�cients

(MCC) in table 2 shows that at least 7 variables are per-
fectly correlated. A correlation of 100 percent is also known
as a functional dependency and is not contributing any in-
formation to the dataset, except for redundancy. Based on
the results of DCT we therefore eliminated 6 of these 7 vari-
ables from our dataset. We also tested our DCT tool on the
resulting database after preprocessing and indeed found that
the number of discriminant functions needed for classi�cation
remained constant whereas the dimensionality of the input
data was reduced with 6 dimensions. Post evaluation of train-
ing a neural net delivers a less complex net with fewer input
neurons as well as fewer neurons in the hidden layer, while
the classi�cation accuracy stays the same and training time
decreases dramatically. When evaluating the other measures
(see table 3) we �nd that the Canonical Correlation remains
high (0.98) after eliminating these 6 variables, indicating that
the correlation between the groups and the discriminant func-
tions is high. Also interesting is that a relative large propor-
tion of the total discrimination power is explained by the �rst
discriminant function. Since Wilks Lambda as close to zero
(0.000616) we can conclude that there is a high discrimina-
tion power available in the dataset, which tells us that the
group centroids are very di�erent. This is also found in the
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Var: reg.col reg.row vdg-mn vgd-sd hdg-mn hdg-sd intsy-mn rwred-mn

MCC: 0,185 0,717 0,726 0,794 0,760 0,809 1,000 1,000

Var: rwblue-mn rwgrn-mn xred-mn xblue-mn xgrn-mn value-mn sat.-mn hue-mn

MCC: 1,000 1,000 1,000 1,000 1,000 1,000 0,774 0,94

Table 2. Multiple Correlation Coe�cients for the sixteen variables of the segment dataset

Stats: BHEP M-Stat SDratio EV/TDP 1stCanCor Wilks Nr.SDiscF.

After Preproc: 77,789 50141,72 11,236 0,564 0,976 0,000616 6

Table 3. Results for V-statistic, number of signi�cant eigenvalues (Nr.SDiscF.) and canonical correlation of the segment dataset

experimental results, where classi�ers were build with high
accuracies (default class: 0.14 percent, classi�cation results
between 90 - 95 percent, depending on the algorithms used).

5.2 Example: Post-operative

When considering the dataset Post-operative (classi�cation
of patients in one of three groups: transfer to Intensive Care,
Normal Care or send them home), one sees that:

� the class entropy H(C) is 0.98, whereas
� the mean information gain (�Igain) is 0.018.
� Gini-index shows a valuerange of [0 , 0.021] and
� g-function has a range of [6.97�32, 1.78�30]

These characteristics tell us that there is signi�cantly less in-
formation available in the attributeset (�Igain) as is required
by the class entropy (H(C)). The class entropy provides a
measure for the number of binary decisions that is necessary
to be able to di�erentiate between the classes. The low values
of the Gini-index show that there are no attributes that really
contribute to the classi�cation. As a last indicator one can in-
terpret the near zero values of the g-function as an indication
for the fact that there is no high probability to �nd the joint
distribution of the classes and attributes.

6 Conclusions

Beginning with ideas from the knowledge acquisition �eld and
statistical principles and guided by projects as MLT [1] and
StatLOG [9] we �nally came up with a framework for User
Guidance Modelling (UGM: [3], [5]) that recollects a top down
(problem de�nition etc.) and bottom up (data characteristics)
process. The results of DCT are used for initiation or support
of preprocessing of the data. Several techniques from the �eld
of statistics as well as information theory are implemented
in our UGM prototype. We are aware of the fact that due
to our focus on statistical techniques we neglected situations
in which combinations of continuous and discrete data are
found (as in most real world settings). Therefore, in the fu-
ture we have to focus on the relationship between information
theoretical approaches and the approach described here. The
examples show us that indeed interesting and helpful prepro-
cessing can be de�ned that is based on the several test statis-
tics that are calculated. Other research at our institute aims
at using DCT for algorithm selection and will be integrated
in the UGM framework.
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