
Published in the: Proceedings of the 2nd int. Conf. on Knowledge Discovery in Databases (1996) 1

Planning tasks for Knowledge Discovery in Databases;
Performing Task-Oriented User-Guidance.

Robert Engels�

University of Karlsruhe, Institute AIFB,
D-76128, Karlsruhe, Germany

Email: engels@aifb.uni-karlsruhe.de

Abstract

Performing the complex task of Knowledge Disco-
very in Databases (KDD) requires a break-down of
the task-complexity to enable the possibility of per-
forming the KDD-task. Since even more techniques
will appear in the future that can solve a variety of
KDD-problems, a domain expert that wants to ana-
lyse his domain should have the means to work with
tools that integrate several of these techniques as well
as the techniques themselves. In this paper a frame-
work is proposed for a strategy component that is to
be used for a KDD-system that can guide users in
breaking down the complexity of a typical KDD-task
and supports him in selecting and using several ML-
techniques. The goals of such a guidance component
are reuse of (prede�ned) taskcomponents in order to
decrease development time and to simplify the process
of decomposing a KDD-task, task-oriented planning in
order to break down complexity of a typical KDD-task
and supporting post-processing (evaluation) of KDD-
processes.

Keywords : User-support, Knowledge Discovery

in Databases, Task-decomposition, Reusable Process
Components

Providing User-Guidance for
KDD-processes

The question whether there is a need for user-guidance
or not is already answered by several studies mentioned
in the literature (see i.e. (Consortium 1993), (Mla-
deniĉ 1995), (Ram & Hunter 1992), (Hunter 1995)).
The answer to the "how" question is not so easily ans-
wered. There are several approaches that provide a
kind of user-support, but a real guidance of a user that
helps planning KDD-processes by building up task-
decompositions according to the users intentions and

�This work has been partially funded by the Daimler
Benz AG, Research & Technology, project no. 096 4 965047
1 E B. O�cial version published by the American As-
sociation for Arti�cial Intelligence (http://www.aaai.org).
Copyright 1996 American Association for Arti�cial Intelli-
gence. All rights reserved.

helping him to re�ne and alter his problem statement
if necessary is not common.

The framework we propose partly stems from ideas
of the �eld of knowledge acquisition where task-
decomposition and reusable task-descriptions are used
to describe and specify complex tasks. The user that
we see as a typical user of our system is a domain
expert that does not have extensive knowledge about
KDD and wants an additional tool for the analysis of
his database. The expert also has some understanding
of the KDD-task in the sense that he knows a little
about the several di�erent core tasks that underlie a
KDD-process (i.e. visualisation, classi�cation, depen-
dencies, prediction).

User-guidance in a KDD-session is started (as men-
tioned) with a description of the problem by the ex-
pert. This description is to be re�ned until a clear
goal state is de�ned. This is to be done iteratively and
interactively (we do not expect the process to be to-
tally automatical) with a knowledge engineer because
it will seldom be the case that the initial problem des-
cription is clearly enough speci�ed to form a beginning
of the planning process. Once the goal state is descri-
bed it can be mapped upon a high-level task, where
we assume a set of prede�ned high-level tasks that are
de�ned by the system. Such a high-level task should
then be decomposed in a task-structure that breaks
down the complexity of the initial task in a sequence
of subtasks that together concretise the task and pro-
vide a solution for the initial (planning) problem. The
task decomposition process consists of a process that
has two dimensions, namely the identi�cation of a se-
quence of subtasks that can perform a certain task,
and the identi�cation of several alternative sequences
for these subtasks. Pre- and postconditions are de�ned
over tasksequences, as well as a control-ow that is de-
�ned over them. The solution (as we will call it, see
also section) then consists of a set of algorithms that
can be executed in order to get the required "valid, no-
vel, potentially useful, and ultimately understandable
patterns in data" as de�ned in the de�nition of KDD
(Fayyad et al. 1996).

Terminology

In this section we will clarify the terminology that is
used in our approach to KDD-process guidance. We
see this step as necessary because of the diversity in
terminology that can be found when analyzing the li-
terature and in order to clear the context we want to
use.
The terminology we want to clarify is the termino-

logy that relates to the so-called KDD- guidance mo-
dule. In the following we clarify the concept of a pro-
blem, problem description, tasks, task decomposition,
techniques, solution, input data, discovered knowledge
and mapping.

Problem: A problem is de�ned in general as an ar-
tifact that contains three elements, an initial state,
a goal state and a discrepancy between those.

A well known and usefull distinction at this point can
be made between ill-de�ned problems and well-de�ned
problems, where a problem is called ill-de�ned when1:
the goal state is not clearly described, the initial state
is not clear (some characteristics relevant to the initial
state might be unknown) or the information needed to
solve the problem is not available, i.e. a problem is
also ill-de�ned if the characteristics of the initial state
are not relatable to the characteristics of the goal state,
because then there is no possibility to compare the two.
A well-de�ned problem is a problem were the initial
and the goal state are known, and where there is only
one pair containing a unique initial state and a goal
state, and a discrepancy between the two for which no
existing solution exists.
A problem can be stated in a natural language form.
It forms the basis upon which a problem description is
de�ned.

Problem Description: A problem description is a
pair that consists of a single goal state for the sy-
stem, and a description of the initial state in which
the system is.

The description of the initial state can contain more
knowledge than is required to de�ne the discrepancy
between the initial and the goal state.
A problem description results from the process of

transforming a situation in which only an ill-de�ned
problem exists into a situation in which a well-de�ned
problem exists. The domain expert iteratively re�nes
his/her initial problem statement with regard to indi-
stinctnesses that a knowledge engineer recovers.

Tasks: A task consists of a certain set of inferences
that, when executed, transforms a certain state into
another state. A task consists of an action that,
when performed, bridges the gap between an initial
and a goal state.

1See also (Simon 1985) for a theorie on well- and ill-
de�ned problems in an information-processing theory.

A task has certain pre- and postconditions, where the
preconditions de�ne the possible deployment domain
of a task (task resources), and the postconditions the
characteristics of the knowledge that results when the
task is performed (task e�ects).

Task Decomposition: A task decomposition is a
re�nement of a task into a task/subtask hierarchy.

The top-level task is identical to the task to be com-
posed, and the leaves of the tree form a set of subtasks
to be performed that together can perform the task at
the top-node level. A (sub-) task that can not be fur-
ther decomposed is called a generic or primitive task
((Chandrasekaran, Johnson, & Smith 1992)).

Problem Solving Methods: A Problem Solving
Method2 typically describes how to solve a task by
decomposing and de�nes an order on the subtasks
in the decomposition through a controlow.

One speaks of a task-subtask decomposition if one can
reach the functionality of a task by performing a (par-
tial) order of subtasks. This kind of re�nement of a
task with a subtask structure is a conjunctive re�ne-
ment. The functionality of a certain task is de�ned
in terms of pre- and postconditions of the task and
also depends on the (partial) ordering posed upon the
subtasks by the controlow. Typically, the task de-
composition can cause a re�nement of the tasks' func-
tionality since a subtask might introduce additional or
re�ned pre- and postconditions. The reason for this is
that the subtasks of a task would be more speci�c than
their higher-level parents.

Techniques: Techniques refer to algorithms
that,when executed, can reach the de�ned functio-
nality of a (generic) task. Such an algorithm does
not necessarily need to be a data mining tool in our
context, but can also be a (set of) manual steps that
should be performed.

Techniques in our framework thus refer to the (ulti-
mately) implemented algorithms that are available in
the KDD-tool. Every technique describes an algorithm
and therefore exists of an abstract artifact as well as
a description of the parameters that are connected to
it. Techniques typically come with parameters that are
used for tuning the techniques for several di�erent si-
tuations. The abstract artifact is the part that will be
used for the mapping on the task-decomposition, where
the parameter descriptions can be seen as a de�nition
of the range of application of the artifact.

Solution: With a solution is meant the result of an
iterative and interactive (planning-)process, where
a domain expert, eventually in cooperation with a

2For more about PSM's and their justi�cation see
(Schreiber, Wielinga, & Breuker 1993), (Breuker & van de
Velde 1994), for an analysis of a typical PSM see (Fensel
1995).

knowledge engineer, transforms an "ill- de�ned" pro-
blem into a "well-de�ned" problem, and where this
"well-de�ned" problem description (together with
eventual additionally known domain characteristics)
forms the starting point for a planning process in
a (semi-) closed world. The result of this planning
process is called a solution and consists of a task de-
composition of a KDD-process that, when followed,
provides a way to bridge the gap between initial and
goal state in a problem description.

The pair of states that form the problem descrip-
tion forms the basis for a search-process is perfor-
med in a "semi-closed" world of possible task decom-
positions that will ultimately match a speci�c task-
decomposition upon this pair of states. The search
space is in principle closed, since one can expect to
�nd a solution when one has a well-de�ned problem-
description that �ts on a certain top-level task, alt-
hough this can not be garantueed in every case due
to the uncertainty that is caused by the re�nement
operator that may introduce (unsatis�able) new pre-
conditions at every re�nement step.
A solution then refers to a (controlow-determined)

sequence of techniques that, when executed, should re-
ach the functionality of the top-node task that is map-
ped upon the problem-description.

Input Data: Input data refers to the data that is
input to the KDD-process, i.e. the data that �nally
is to be analysed.

Input data can exist of the intensional and extensional
descriptions of domain speci�c knowledge, and forms
the data that is subject of analysis.

Discovered Knowledge: With discovered know-
ledge we refer to the results of the execution of the
planned solution for the KDD-problem that is des-
cribed in the problem description.

We explicitly make a distinction between a solution
and discovered knowledge, where a solution refers to
the result of the planning that is the main task of
the guidance module (i.e. the order of algorithms and
their parameter initialisations), and discovered know-
ledge, that is the result of the execution of our solution.
The domain expert who provided the problem will be
mainly interested in this "discovered knowledge".

Mapping: The mapping process means to map the
task decomposition and the resulting controlow
that is de�ned over it, onto an ordered sequence of
techniques that together can bridge the gap between
the initial and goal state in the problem description.

This step connects the resulting task-decomposition to
techniques. The process of decomposing and mapping
is an iterative process that should also provide support
for the parameter initialization of the several techni-
ques.
The main terminology as we want to use has been de-
scribed in this section. The next section will shortly

describe the dimensions of which the guidance module
consists of.

Dimensions of User-Guidance

User-guidance and support is the main task for our gui-
dance module and is built up around two di�erent di-
mensions. The �rst dimension deals with the planning
process and supports a user with de�ning the "what"
and "how" of his problem. With the "what" is meant
the clari�cation of his problem (i.e. transforming an
ill-de�ned in a well-de�ned problem), the "how" re-
fers to the match of the resulting pair of states onto a
high-level task that can dissolve the discrepance bet-
ween initial and goalstate, and decomposing it into an
order of subtasks.
The second dimension deals with the execution of

the results of the planned task.

Planning the KDD-process

As mentioned, the �rst step when dealing with a plan-
ning task for KDD is to de�ne what the problem really
is. Experience with performing KDD-tasks learned us
that most initial user-requests for data-analysis are ill-
de�ned, that is, a request is most often vaguely descri-
bed, lacks clarity, and it is impossible to decide whether
there is a solution to the problem or not. If one does
not carefully analyse the request it can happen that
one analyses another problem as originally stated by
the expert. At this point a lot of human interaction is
needed of a knowledge engineer with the domain ex-
pert that provided the problem.

When a problem description is found, according to the
de�nition in section , then a process of planning is
started. The pair of states, that form the well-de�ned
problem, as well as additional knowledge that might
be known about the domain (data), form the star-
ting point of a search for a task-decomposition that
can bridge the gap between initial and goalstate. This
task-decomposition can be seen as a kind of "augmen-
ted" hierarchy, since it is not only a hierarchy that
provides subtasks for a task, but also poses an order
upon those subtasks (as de�ned in controlow of PSM-
components).
So, summarized, we see the highlevel KDD-process

de�nition in a schema-based way, where a task mo-
del for a typical KDD-task is taken to be the schema
that should be �lled out with building blocks (PSM's)
that are partly pre-de�ned (but can be user-de�ned as
well) according to the goals that are described in the
problem-description.
The task-decomposition describes an order of tasks

that should be performed in order to solve the problem.
A mapping should then take place in order to select
appropriate techniques that can perform this order of
tasks. Once such an order is found one can go to the
executional phase, where the tasks should be actually
performed.

Execution of a KDD-solution

A logical step after the planning of the process is, of
course, the execution of the set of techniques in the
appropriate order and with the appropriate parameter
settings.
That this is not a straightforward problem can be

seen in the �eld of planning, where making plans was
always treated as the main problem, but lately a gro-
wing interest is reported in the execution of such plans,
that seem to cause additional problems when executed.
One of these additional problems we have to tackle in
our KDD-framework are the parameter settings of the
several techniques. When executing, the functionality
of the implemented techniques can be changed (some-
times a lot) by just changing a single parameter. Sup-
porting the initialisation of those parameters is a pre-
requisite for a succesful execution of the solution found
in the planning process. It might be that parameter
settings are initialisable according to the functionality
description that is provided by the task-decomposition.
In our framework the parameter setting initialisation
should also be supported by the mapping process that
precedes the execution of the technique sequence. In
case of failure there is a possibility to fall back on a set
of defaults.

A KDD-process example
In this section we will provide an example of a KDD-
process that is performed using a multi-strategy ap-
proach as de�ned in this paper. The example is per-
formed in the �eld of prediction of warranty costs for
cars, and uses data from a rather extensive database
that contains all the registrations of new cars with their
construction-characteristics and warranty costs.
From the �eld of KA, several problem solving me-

thods can be taken that form a profound basis for reu-
sable task-components.
In the following we will integrate the assessment

PSM (Valente & L�ockenho� 1994) in the task decom-
position that we de�ne for our example problem. We
propose a division of the KDD-solution for our problem
in three subtasks that map on our initial taskmodel
for KDD-processes as proposed in (Reinartz & Wirth
1995):

1. A "recognition"-task that has the goal to recognise
and extract the relevant early warning cars from the
dataset. In terms of our taskmodel this can be seen
as a pre-processing stage where focussing on relevant
data takes place, and a �rst learning step, where
(given this relevant data) a grouping for data at a
speci�c time t in several classes is performed.

2. A "classi�cation"-task that produces classi�cation
rules for the distinguished classes.

3. A "deployment"-task that matches new data-tuples
to the set of rules and thus assesses the class-
membership of new tuples and that matches the
set of EW-tuples (Early-Warning cars) that the

"prediction"-task provides in order to match them
to a certain (user-de�ned) treshold.

Actually, a fourth step should be integrated before
the other three, namely a focussing step. It is not the
case that the data as present in the database can rea-
listically be used, since there are simply to many data-
tuples, and too many of them are irrelevant as well.
An example is the occurence of trucks and cars in the
database, where the problem description already pro-
vide a focus on the subset of the tuples in the database
that are concerned with cars.
Every task in the KDD-solution of �gure 1 has its as-
sumptions about the (meta-) knowledge it needs and
about the output it can deliver. Being too speci�c does
not help us much w.r.t. reuse, and being too general
neither (a well- known trade-o� in Software Enginee-
ring (Kr�uger 1992)).

The overall task of our example approach is decom-
posed in three steps at the �rst level of decomposition.
First we will shortly repeat what the problem in our
example was3:
Give a warning signal at time t if quarantuee costs at
time t+x for a (certain type of) car will raise abnor-
mally.
In the next sections we will describe the three subtasks
with their decompositions: recognition, classi�cation
and deployment.
The "recognition"-task is itself further decomposable
in three sub-tasks: a cluster subtask, that clusters a
set of database tuples, an "incrementally add" sub-
task, and an assessment task that estimates the class
allocation of the datatuples from the set of datatuples
with time t-x. The next subtask on the �rst level of
decomposition is concerned with the production of a
set of classi�cation rules for the classes that are found
in the "assess class-allocation" subtask. This subtask
is concerned with the deployment of these results. In
the �rst subtask an assessment is made of the class-
allocation of new datatuples at time t+x. The results
of this assessment are gathered and form the input for
the second subtask that provides the actual warning
signal. Altogether the subdivision in subtasks made it
possible to perform the rather complex task that was
decomposed in three subtasks (each of which is further
decomposed). These tasks where coupled to eachother
through a set of pre- and postconditions that reassured
the compatibility of the tasks among eachother. Doing
so we have a way of de�ning the compatibility of the
subtasks, as well as a way for guiding the planning
of technique selection as well as an order in which to
execute the selected techniques. Reuse of process com-
ponents is shown by the multiple usage of a speci�c
PSM, although the example (due to space-restrictions)

3Where the timeline covers a range from t � x (x
days/months/years in the past) over t (present) to t + x

(x days/months/years in the future).

CtCluster

Where:

EW = Early Warning Car

Ct = Cluster at time t

NO-EW = Non Early Warning Car

t-xD = Datatuple from time t-x

create
Warning signal

else EW
then NO-EW

If Ct-changed=yes

Rules: Threshold

Add D t-x
to Ct

Hard-coded
Split/Merge

Matcher
Ecobweb

FOIL C4.5

Neural nets
etc.

CN2

Autoclass

etc.

System Model

MeasurementSystem

Classification
Rules

for EW/NO-EW

Produktion rules

SystemDescription:

PSM-assessment

Classified
Cases

New Cases
at t+x

match
EW/NO-EW

on new cases

PSM-assessment

Cluster Ct

match
Cluster-
changes

EW/NO-EW
Decision

System Description:

merge/split-
operator, etc.

System Model

Task-Decomposition
Solution

Signal (user-defined)

evt. alternative techniquesevt. alternative techniques

technique

Application of
measurement system

Hard-coded

Criteria

technique technique technique technique

KDD-task

Recognise
DeploymentClassify

EW/NO-EW

Figure 1: Taskdecomposition of our KDD-solution for the application problem showing integration of the PSM
assessment in a (KDD) task decomposition.

had to be kept abstract.

Conclusions and related work
For our purposes we see an opportunity to integrate
ideas of the several involved disciplines to support
breaking down task-complexity of KDD-processes by
using task-decompositions. The framework we show
here provides a means of exible planning of a KDD-
process according to goals that are made explicit. The
user gets support in the sense of pre-de�ned task-
decomposition components and is provided with a
means to de�ne those themselve as well. The need
for a kind of task-related support is already noticed in
(Consortium 1993) and (Thomas, Ganascia, & Laublet
1993).
Therefore we adapted ideas of the KA-community

(for example, we did have a look at the ideas on know-
ledge level modeling as mentioned in KADS (Wielinga,
Schreiber, & Breuker 1992), MIKE (Angele, Fensel, &
Studer 1996), Components of Expertise (Steels 1990),
General Directive Models (van Heijst 1995) and Gene-
ric Tasks, (Chandrasekaran, Johnson, & Smith 1992))
and extended the de�nition of KDD as proposed in
(Fayyad et al. 1996) in order to introduce the idea

of goal-driven KDD. We feel the de�nition as provi-
ded by (Fayyad et al. 1996) needed to be extended
by agents, because the 'ultimately understandable pat-
terns', mentioned in the de�nition, require the notion
of an agent in order to be able to de�ne the term 'un-
derstandable'. On the other hand we see the need for
an extension of this de�nition with goals since there is
a problem de�ning potentially usefull results when no
goals are de�ned that relate results to needs.

From the �eld of KDD, the need for breaking down
task-complexity in order to solve problems is recogni-
zed (see i.e. (Reinartz & Wirth 1995)). Certainly as
even more tools will become available to perform data
mining, tools that help users selecting and using the
right tools for their problems should become available.
However, during the KDD-95 conference ((Fayyad &
Uthurusamy 1995)) there were not many approaches to
be found that dealt with this task-decomposition and
user-support problem. Earlier work on the ESPRIT
project MLT ((Consortium 1993)), shows a project
part that is concerned with the issue of user-guidance
and support CONSULTANT (Craw et al. 1992), which
is later further developed in MUSKRAT (Graner &
Sleeman 1993), but no publications are found that do

elaborate upon this idea of user-guidance according to
tasks and task-decompositions.

An approach that is concerned with the reuse of soft-
ware components rather than the reuse software pro-
cesses is the OCAPI system (van den Elst, van Har-
melen, & Thonnat 1995). In this approach the idea
of modelling processes according to tasks is presented,
but, as mentioned, the authors stress the reuse of com-
ponents rather than of processes. Reuse of components
as in OCAPI is also a topic in our framework, where
these components exist of data mining techniques rat-
her than image processing programs as in OCAPI.
Both approaches share the modelling of pre- and post-
conditions as well as the modelling of component pa-
rameters (that inuence the components functionality)
at an abstract level.

Furthermore we see a chance for reusing already de-
�ned KDD-processes in certain cases were a problem
description de�nes a very similar problem to a previ-
ously solved problem (think for example of our speci�c
task description that should be repeatedly performed
in order to adjust predictions to new data that is ga-
thered, or that instead of two classes more classes are
to be analysed). Here we can see a straightforward
need for some kind of reuse of whole KDD-processes,
since there is no doubt that developing whole applica-
tions again for just a slightly changed problem is not
necessary.

The example also showed, although at a rather
abstract level, how one can integrate reusable com-
ponents (like the assessment PSM as described in (Va-
lente & L�ockenho� 1994)) in a task-decomposition. We
see a possibility of augmenting a KDD-tool with these
structures in order to have a kind of prede�ned struc-
tures that support the de�nition of certain subtasks,
and to be able to de�ne these in a exible way.

User-guidance performed in this way delivers a so-
lution in the sense that the user interactively de�nes
a sequence of techniques that can solve his problem,
and also gets feedback on whether he can expect an
answer on his problem de�nition using the tool or that
he should alter his problem de�nition (i.e. relaxing or
specifying the requirements he states in his problem
description).

Future work

For the future we plan the further evaluation and im-
plementation of this framework and test it on some
more applications. Problems we want to deal with are
problems concerning the selection and retrieval of the
reusable building blocks according to their functional
descriptions, the support of the user by selection of
appropriate parameter settings according to the task
characteristics and the value of this for task iterations.
Integration of more techniques into the framework is
also planned.

Acknowledgements
Thanks to R�udiger Wirth, Thomas Reinartz, the Daimler project
group and Rudi Studer for fruitfull discussions on the topics presen-
ted in this paper.

References
Angele, J.; Fensel, D.; and Studer, R. 1996. Domain and task
modelling in mike. In Proceedings of the IFIP WG8.1/13.2 Joint
Working Conference on Domain Knowledge for Interactive Sy-
stem Design.

Breuker, J., and van de Velde, W. 1994. CommonKADS Library
for Expertise Modelling. IOS Press.

Chandrasekaran, B.; Johnson, T. R.; and Smith, J. W. 1992. Task-
structure analysis for knowledge modeling. Communications of the
ACM 35(9):124{137.

Consortium, M. 1993. Final public report. Technical report. Esprit
II Project 2154.

Craw, S.; Sleeman, D.; Granger, N.; Rissakis, M.; and Sharma,
S. 1992. Consultant: Providing advice for the machine learning
toolbox. In Bramer, M., and Milne, R., eds., Research and Deve-
lopment in Expert Systems, 5{23.

Fayyad, U., and Uthurusamy, R. 1995. Proceedings of the �rst In-
ternational Conference on Knowledge Discovery & Data Mining.
Menlo Park, California: AAAI Press.

Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and Uthurasamy,
R. 1996. Advances in Knowledge Discovery and Data Mining.
Cambridge, London: MIT press.

Fensel, D. 1995. Assumptions and limitations of a problem-solving
method: a case-study. Proceedings of the 9th Ban� Knowledge
Acquisition for Knowledge-Based Systems Workhop.

Graner, N., and Sleeman, D. 1993. Muskrat: a multi-strategy
knowledge re�nement and acquisition toolbox. In Michalski, R.,
and Tecuci, G., eds., Proceedings of the Second International
Workshop on Multistrategy Learning, 107{119.

Hunter, L. 1995. Planning to learn. In Ram, A., and Leake, D.,
eds., Goal-Driven Learning. London, England: MIT press.

Kr�uger, C. W. 1992. Software reuse. ACM Computing Surveys
24(2):131{183.

Mladeniĉ, D. 1995. Automated model selection. In Proceedings of
the Knowledge Level Modelling and Machine Learning Workshop,
Crete.

Ram, A., and Hunter, L. 1992. The use of explicit goals for know-
ledge to guide inference and learning. Applied Intelligence 2(1):46{
73.

Reinartz, T., and Wirth, R. 1995. Towards a task model for kdd-
processes. In Kodrato�, Y.; Nakhaiezadeh, G.; and Taylor, C.,
eds., Workshop notes Statistics, Machine Learning, and Know-
ledge Discovery in Databases. MLNet Familiarisation Workshop,
19{24.

Schreiber, T.; Wielinga, B.; and Breuker, J. 1993. KADS: A
Principled Approach to Knowledge-Based System Development.
London: Academic Press.

Simon, H. 1985. Information-processing theory of human problem-
solving. In Aitkenhead, A., and Slack, J., eds., Issues in Cognitive
Modeling., 253{278. Lawrence Erlbaum Ass., London.

Steels, L. 1990. Components of expertise. AI Magazine.

Thomas, J.; Ganascia, J.-G.; and Laublet, P. 1993. Model-driven
knowledge acquisition and knowledge-biased machine learning: an
example of a principled association. In Workshop proceedings of
the 13th Int. Joint Conference on Arti�cial Intelligence, volume
W16, 220{235.

Valente, A., and L�ockenho�, C. 1994. Assessment. In (Breuker &
van de Velde 1994), 155 { 174. IOS-Press.

van den Elst, J.; van Harmelen, F.; and Thonnat, M. 1995. Mo-
delling software components for reuse. In Seventh International
Conference on Software Engineering and Knowledge Enginee-
ring, 350{357. Knowledge Systems Institute.

van Heijst, G. 1995. The Role of Ontologies in Knowledge Engi-
neering. Ph.D. Dissertation, University of Amsterdam.

Wielinga, B.; Schreiber, A.; and Breuker, J. 1992. Kads: A model-
ling approach to knowledge engineering. special issue "the kads ap-
proach to knowledge engineering". Knowledge Acquisition 4(1):5{
53.

