
1

1

On-To-Knowledge: Semantic Web Enabled
Knowledge Management

Dieter Fensel, Frank van Harmelen, Ying Ding, Michel Klein, Hans Akkermans
Free University Amsterdam VUA, Division of Mathematics and Informatics

De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands
http://www.ontoknowledge.org ; contact: dieter@cs.vu.nl

Jeen Broekstra, Arjohn Kampman, Jos van der Meer, AIdministrator, The Netherlands
York Sure, Rudi Studer, AIFB, University of Karlsruhe, Germany

Uwe Krohn, John Davies, BT, Ipswich, UK
Robert Engels, CognIT, Oslo, Norway

Victor Iosif, Enersearch AB, Gothenburg, Sweden
Atanas Kiryakov, OntoText, Sofia, Bulgaria

Thorsten Lau, Ulrich Reimer, Swiss Life, Zurich, Switzerland
Ian Horrocks, University of Manchester, UK

Abstract. On-To-Knowledge builds an ontology-based tool environment to speed
up knowledge management, dealing with large numbers of heterogeneous,
distributed, and semi-structured documents typically found in large company
intranets and the World Wide Web. The project’s target results are: (1) a toolset for
semantic information processing and user access; (2) OIL, an ontology-based
inference layer on top of the World Wide Web; (3) an associated methodology and
validation by industrial case studies. This paper offers an overview of the On-To-
Knowledge approach to knowledge management.

1. Introduction

The World Wide Web (WWW) has drastically changed the availability of electronically available
information. Currently, there are around one billion documents in the WWW, which are used by
more than 300 million users internationally. And that number is growing fast. However, this success
and exponential growth makes it increasingly difficult to find, to access, to present, and to maintain
the information required by a wide variety of users. Document management systems now on the
market have severe weaknesses:

� Searching information: Existing keyword-based searches can retrieve irrelevant information
that includes certain terms in different meanings. They also miss information when different
terms with the same meaning about the desired content are used.

� Extracting information: Currently, human browsing and reading is required to extract relevant
information from information sources. This is because automatic agents do not possess the
common sense knowledge required to extract such information from textual representations,
and they fail to integrate information distributed over different sources.

� Maintaining weakly structured text sources is a difficult and time-consuming activity when
such sources become large. Keeping such collections consistent, correct, and up-to-date requires
mechanized representations of semantics that help to detect anomalies.

� Automatic document generation would enable adaptive websites that are dynamically
reconfigured according to user profiles or other aspects of relevance. Generation of semi-
structured information presentations from semi-structured data requires a machine-accessible
representation of the semantics of these information sources.

2

2

However, the competitiveness of many companies depends heavily on how they exploit their
corporate knowledge and memory. Most information in modern electronic media is mixed media
and rather weakly structured. This is not only true of the Internet but also of large company
intranets. Finding and maintaining information is a tricky problem in weakly structured
representation media. Increasingly, companies have realized that their intranets are valuable
repositories of corporate knowledge. But as volumes of information continue to increase rapidly, the
task of turning them into useful knowledge has become a major problem. Tim Berners-Lee
envisioned a Semantic Web (cf. [Berners-Lee et al., 2001] [Fensel et al., to appear]) that provides
automated information access based on machine-processable semantics of data and heuristics that
use these meta data. The explicit representation of the semantics of data, accompanied with domain
theories (i.e., ontologies), will enable a web that provides a qualitatively new level of service. It will
weave together an incredibly large network of human knowledge and will complement it with
machine processability. Various automated services will help the user achieve goals by accessing
and providing information in machine-understandable form. This process may ultimately create
extremely knowledgeable systems with various specialized reasoning services systems that can
support us in nearly all aspects of life and that will become as necessary to us as access to electric
power.
Ontologies (cf. [Fensel, 2001]) are key enabling technology for the semantic web. They need to
interweave human understanding of symbols with their machine processability. This clearly
warrants a closer look at the nature of ontologies and at the question of whether they can actually
provide such a service, and if so, how. Ontologies were developed in artificial intelligence to
facilitate knowledge sharing and re-use. Since the early nineties, ontologies have become a popular
research topic. They have been studied by several artificial intelligence research communities,
including knowledge engineering, natural-language processing and knowledge representation. More
recently, the concept of ontology is also gaining tremendous ground in fields, such as intelligent
information integration, cooperative information systems, information retrieval, electronic
commerce, and knowledge management. The reason ontologies are becoming so popular is largely
due to what they promise: a shared and common understanding of a domain that can be
communicated between people and application systems.
The contents of this paper are structured as follows. Section 2 begins with a description of the tool
environment we developed in On-To-Knowledge to facilitate semantic web technology for
information access and knowledge management. Section 3 goes on to examine the Ontology
Inference Layer (OIL), which defines a flexible framework for defining ontology languages in the
semantic web. Working in cooperation with our American colleagues at DAML,1 we defined the
DAML+OIL language that has now been submitted as a web standard at W3C2, the standardization
committee for the World Wide Web. Section 4 discusses the methodological framework for our tool
environment and its application in several industrial case studies, including large organizational
memories, customer relationship management, and knowledge management in virtual enterprises.
Finally, section 5 presents our conclusions and general outlook.

2. Tool Environment for Ontology-based Knowledge Management

A key deliverable of the On-To-Knowledge project is the resulting software toolset. Several
consortium partners are participating in the effort to realize in software the underpinning ideas and
theoretical foundations of the project. A major objective of the project is to create intelligent
software to support users in both accessing information and in the maintenance, conversion, and
acquisition of information sources. These tools are based on a three-layered architecture (see Figure
1). Most of the tools presented here in Figure 1 are described below.

1 www.daml.org
2 www.w3c.org

3

3

Figure 1. The technical architecture of On-To-Knowledge.

RDFferret combines full text searching with RDF querying. Observing that RDF-annotated
information resources are likely to be complemented by non-annotated information for a
considerable period to come, and that any given RDF description of a set of resources will give one
particular perspective on the information described, RDFferret combines full text searching with
RDF querying. RDFferret can be used like a conventional Internet search engine by entering a set of
search terms or a natural language query and produces a list of links to relevant Web pages in the
usual way. However, RDFferret's indexing and retrieval technique is also designed to use domain
knowledge that is made available in the form of ontologies specified as RDF Schemas. RDF
resources are Web pages or (parts thereof) and such pages or segments are effectively ontological
instances. Correspondingly, resource types are ontological classes. The information items processed
by RDFferret are RDF resources, which may be Web pages or parts thereof. During indexing
RDFferret assigns content descriptors to RDF resources. Content descriptors of a resource are terms
(words and phrases) that RDFferret obtains from a full text analysis of the resource content and
from processing all literal values that are directly related by a property. They also retain structural
information about the ontology. In RDFferret the user can select from a list of all the resource types
stored in the index. When searching by selecting a resource type, RDFferret adjusts its result list to
show only resources of the selected type. The user is also presented with a search and navigation
area. The search area shows the attributes of the selected resource type. For each attribute the user
can input a search criterion. RDFferret combines the search criteria entered and matches the
resulting query against its ontology-based index. In addition, resource types (ontological classes)
related by some property to the currently selected type are displayed as hyperlinks. Clicking on such
a type then selects that type and in turn displays those types that are related to it. Thus the user can
browse the ontology in a natural and intuitive way.

Figure 2 shows a typical initial query by a user. The user has entered a free text query for
information about an employee called "George Miller". The search engine has returned a ranked list
of 73 documents mentioning the terms “George” and/or “Miller”. At the top of the screenshot can

4

4

be seen a drop-down list containing the selection “any…”. When returning the 73 results
documents, RDFferret has also compiled a list of the classes to which each document belongs. This
class list is then made available to the user via the drop-down list referred to.

Figure 2. The query interface RDFferret.

OntoShare enables the storage of best practice information in an ontology and the automatic
dissemination of new best practice information to relevant co-workers. It also allows users to
browse or search the ontology in order to find the most relevant information to the problem that
they are dealing with at any given time. The ontology helps to orientate new users and acts as a
store for key learning and best practices accumulated through experience. In addition, the ontology
helps users to become familiar with new domains. It provides a sharable structure for the knowledge
base, and a common language for communication between user groups.

Spectacle organizes the presentation of information. This presentation is ontology driven.
Ontological information, such as classes or specific attributes of information, is used to generate
exploration contexts for users. An exploration context makes it easier for users to explore a domain.
The context is related to certain tasks, such as finding information or buying products. The context
consists of three modules:
� Content: specific content needed to perform a task
� Navigation: suitable navigation disclosing the information
� Design: applicable design displaying the selected content
The modules are independent. For instance, the same content can be explored with different
navigation modules. In order to address different target audiences, different Exploration Contexts
are generated. In this process, it is important that the modules remain autonomous entities that can
be re-used. The content selected comes from sources distributed in - and outside - an organisation.
Navigation is based on business and organisational decisions. It provides a route through the content
presented. Navigation will differ per user and user group. The design controls the look and feel of
the exploration context, including the user interaction. Spectacle consists of the following parts:

5

5

� Spectacle server, which handles all interaction between users and exploration contexts;
� Libraries for creating large scale exploration contexts in a spectacle server;
� Graphical user interface for building small-scale exploration contexts.

OntoEdit [Staab et al., 2000] makes it possible to inspect, browse, codify and modify ontologies,
and thus serves to support the ontology development and maintenance task. Modelling ontologies
using OntoEdit involves modelling at a conceptual level, viz. (i) as independently of a concrete
representation language as possible, and (ii) using GUI's representing views on conceptual
structures (concepts, concept hierarchy, relations, axioms) rather than codifying conceptual
structures in ASCII (see Figure 3). The conceptual model of an ontology is stored internally using a
powerful ontology model, which can be mapped onto different, concrete representation languages.
The functionalities of OntoEdit are easily expandable through a flexible plug-in framework.

Figure 3. Screenshot of OntoEdit.

Ontology Middleware Module (OMM) can be seen as the key integration component in the OTK
technical solution architecture. It supports well-defined application programming interfaces
(OMAPI) used for access to knowledge and deals with such matters as:

� Ontology versioning, including branching.
� Security – user profiles and groups are used to control the rights for access, modifications,

and publishing;
� Meta-information and ontology lookup – support for meta-properties (such as Status, Last-

Updated-By, Responsible, Comments, etc.) for whole ontologies, as well as for separate
concepts and properties. Ontology and concept lookup according to meta-information is
possible.

� Access via a number of protocols: HTTP, RMI, EJB, CORBA, and SOAP.
Reasoning services are also implemented so as to extend the functionality provided by SESAME.
The goal was to enable an even wider set of applications, such as information extraction and
automatic ontology integration. A strategy called pre-reasoning was used to implement
workarounds for a number of logical problems proven to be computationally intractable for
languages as expressive as OIL. Tasks, such as taxonomy construction and instance classification
(realization), are handled off-line.

6

6

LINRO provides additional reasoning services so as to extend the functionality provided by
SESAME. Most of the classical reasoning tasks for description logics (DL) are available, including
realization and retrieval. The goal was to enable even wider set of applications, such as information
extraction and automatic ontology integration. A strategy called pre-reasoning was used to
implement workarounds for a number of logical problems proven to be computationally intractable
for languages as expressive as OIL. Tasks such as taxonomy construction and instance classification
(realization) are being handled off-line.

Sesame [Broekstra et al, to appear] is a system that allows persistent storage of RDF data and
schema information and subsequent online querying of that information. Sesame has been designed
with scalability, portability and extensibility in mind. Sesame itself has been implemented in Java,
which makes it portable to almost any platform. It also abstracts from the actual repository used by
means of a standardized API. This API makes Sesame portable to any repository (DBMS or
otherwise) that is able to store RDF triples. Currently, only implementations based on DBMS's
exist. At the same time, this API enables swift addition of new modules that operate on RDF and
RDF Schema data. One of the most prominent modules of Sesame is its query engine. This query
engine supports an OQL-style query language called RQL. RQL supports querying of both RDF
data (e.g. instances) and schema information (e.g. class hierarchies, domains and ranges of
properties). RQL also supports path-expressions through RDF graphs, and can combine data and
schema information in one query. The streaming approach used in Sesame (data is processed as
soon as available) makes for a minimal memory footprint. This streaming approach also makes it
possible for Sesame to scale to huge amounts of data. In short, Sesame can scale from devices as
small as palm-top computers to powerful enterprise servers. A final feature of Sesame is its
flexibility in communicating with other tools. Currently, Sesame only supports communication over
HTTP. However, support for other protocols can be added transparently, simplifying the integration
of Sesame into a wide range of environments.

CORPORUM toolset (OntoExtract and OntoWrapper): Information extraction and ontology
generation is performed by means of the CORPORUM toolset [Engels et al., 2000] and is situated
in the extraction layer. CORPORUM has two related, though different, tasks: interpretation of
natural language texts and extraction of specific information from free text. Whereas the former
process can be performed autonomously by CORPORUM tools, the latter task requires a user who
defines business rules for extracting information from tables, (phone) directories, home-pages, etc.
Although this task is not without its challenges, most effort focuses on the former task, which
involves natural language interpretation on a syntactic and lexical level, as well as interpretation of
the results of that level (discourse analysis, co-reference and collocation analysis, etc.). The
CORPORUM system outputs a variety of (symbolic) knowledge representations, including
semantic (network) structures and visualizations thereof, light-weight ontologies, text summaries,
automatically generated thesauri (related words/concepts), etc. Thus, extracted information is
represented in RDF(S)/DAML+OIL, augmented with Dublin Core Meta Data wherever possible,
and submitted to the Sesame Data Repository mentioned previously.

Typically, the CORPORUM system does not incorporate background knowledge itself, but relies on
its extraction and analysis capabilities in combination with any knowledge available in the Sesame
repository. The availability of knowledge, however, is not a prerequisite.

7

7

3. OIL: Inference Layer for the Semantic World Wide Web

In the introduction, ontologies were identified as a key technology for making progress in the tasks
outlined there: searching, extracting and maintaining information in a weakly-structured
environments such as company intranets, or even in an open environment like the WWW.

The tools discussed in section 2 all exploited ontologies as their common operating ground: raw
information source were structured on the basis of an ontology (OntoWrapper), this structured data
was stored in an ontology-based repository (Sesame), and the data could be queried using the
vocabulary from the ontology. Finally, information could be shared (OntoShare), searched (RDF
Ferret) or browsed (Spectacle) by users on the basis of such ontological vocabularies.

All of this of course requires the existence of a language to express such ontologies. Some basic
requirements for such a language are:
� sufficient expressivity for the applications and tasks mentioned in the preceding sections
� sufficiently formalized to allow machine processing
� integrated with existing Web technologies and standards

Although much work has been done on ontology languages in the AI community (see e.g. [Corcho
& Gomez Perez, 2000] for a recent overview), it is particularly the 3rd requirement that motivated us
to design a new language (baptised OIL) for our purposes. In this section, we will briefly describe
the constructions in the OIL language, and then discuss its most important features and design
decisions.

Combining Description Logics with Frame Languages

The OIL language (cf. [Fensel et al., 2000], [Fensel et al., 2001], and [Harmelen & Horrocks,
2000]) is to designed to combine frame-like modeling primitives with the increased (in some
respects) expressive power, formal rigor and automated reasoning services of an expressive
description logic. OIL also comes “web enabled” by having both XML and RDFS based
serializations (as well as a formally specified “human readable” form, which we will use here3). The
frame structure of OIL is based on XOL [Karp et al., 1999], an XML serialization of the OKBC-lite
knowledge model [Chaudhri et al., 1998]. In these languages classes (concepts) are described by
frames, which consist of a list of super-classes and a list of slot-filler pairs. A slot corresponds to a
role in a DL, and a slot-filler pair corresponds to either a universal value restriction or an existential
quantification. OIL extends this basic frame syntax so that it can capture the full power of an
expressive description logic. These extensions include:

� Arbitrary boolean combinations of classes (called class expressions) can be formed, and used
anywhere that a class name can be used. In particular, class expressions can be used as slot
fillers, whereas in typical frame languages slot fillers are restricted to being class (or individual)
names.

� A slot-filler pair (called a slot constraint) can itself be treated as a class: it can be used anywhere
that a class name can be used, and can be combined with other classes in class expressions.

� Class definitions (frames) have an (optional) additional field that specifies whether the class
definition is primitive (a subsumption axiom) or non-primitive (an equivalence axiom). If
omitted, this defaults to primitive.

� Different types of slot constraint are provided, specifying universal value restrictions,
existential quantification and various kinds of cardinality constraint.

� Global slot definitions are extended to allow the specification of superslots (subsuming slots)
and of properties such as transitivity, and symmetry.

3 http://www.ontoknowledge.org/oil/syntax/

8

8

� Unlike many frame languages, there is no restriction on the ordering of class and slot
definitions, so classes and slots can be used before they are defined.

� OIL also provides axioms for asserting disjointness, equivalence and coverings with respect to
class expressions.

Many of these points are standard for a description logic, but are novel for a frame language. OIL is
also more restrictive than typical frame languages in some respects. In particular, it does not support
collection types other than sets (e.g., lists or bags), and it does not support the specification of
default fillers. These restrictions are necessary in order to maintain the formal properties of the
language (e.g., monotonicity) and the correspondence with description logics.

Web interface
As part of the Semantic Web activity of the W3C, a very simple web-based ontology language had
already been defined, namely RDF Schema. This language only provides facilities to define class-
and property-names, inclusion axioms for both classes and properties (subclasses and
subproperties), and to define domain and range constraints on properties. Instances of such classes
and properties are defined in RDF.

OIL has been designed to be a superset of the constructions in RDF Schema: all valid RDF Schema
expressions are also valid OIL expressions. Furthermore, the syntax of OIL has been designed such
that any valid OIL document is also a valid RDF(S) document when all the elements from the OIL-
namespace are ignored. The RDF Schema interpretation of the resulting subdocument is guaranteed
to be sound (but of course incomplete) with respect to the interpretation of the full OIL document.

This guarantees that any RDF Schema agent can correctly process arbitrary OIL documents, and
still correctly capture some of the intended meaning. The full details of how this has been achieved,
and the trade-offs involved in this can be found in [Broekstra et al., 2000].

Layering

For many of the applications from section 1, it is unlikely that a single language will be ideally
suited for all uses and all users. In order to allow users to choose the expressive power appropriate
to their application, and to allow for future extensions, a layered family of OIL languages has been
described. The sublanguage OIL Core has been defined to be exactly the part of OIL that coincides
with RDF(S). This amounts to full RDF(S), without some of RDF’s more dubious constructions:
containers and reification.

The standard language, is called “Standard OIL”, and when extended with the ability to assert that
individuals and tuples are, respectively, instances of classes and slots), is called “Instance OIL”.
Finally, “Heavy OIL” is the name given to a further layer that will include as yet unspecified
language extensions. This layering is depicted in Figure 4.

9

9

Figure 4. The layered language model of OIL.

Figure 5 illustrates an OIL ontology (using the human readable serialization), developed in a skills
management case study by Swiss Life.

class-def Department
instance-of ITDept Department
class-def Skills
 slot-constraint SkillsLevel cardinality 1
slot-def HasSkills
 domain Employee
 range Skills
slot-def WorksInProject
 domain Employee
 range Project
 inverse ProjectMembers
class-def defined ITProject
 subclass-of Project
 slot-constraint ResponsibleDept has-value ITDept
slot-def ManagementLevel
 domain Employee
 range one-of "member" "head-of-group"
 "head-of-dept" "CEO"
class-def Publishing
 subclass-of Skills
class-def DocumentProcessing
 subclass-of Skills
class-def DesktopPublishing
 subclass-of Publishing and DocumentProcessing
instance-of GeorgeMiller Employee
related HasSkills GeorgeMiller DesktopPublishing3
instance-of DesktopPublishing3 DesktopPublishing
related SkillsLevel DesktopPublishing3 3

Figure 5. OIL illustration.

10

10

The following points are noteworthy:

� Skills are restricted to being of a single level trough a cardinality constraint
� WorksInProject and ProjectMembers are defined to be each others inverse
� ITProjects are defined to be exactly those projects whose ResponsibleDept is the ITDept.
� DeskTopPublishing is defined to be in the intersection of Publishing and DocumentProcessing

Current status

Meanwhile, OIL has been adopted by a joined EU/US initiative that developed a language called
DAML+OIL4, which has now been submitted to the Web Ontology Group of the W3C5, the
standardization committee of the WWW. We can soon expect a recommendation for a web
ontology language; hopefully, it will feature many of the elements and aspects on which OIL is
based.

Future developments

In November 2001, the W3C started a Working Group for defining a Web Ontology language. This
WG is chartered to take DAML+OIL as its starting point. Over 40 of the W3C members from
academia and industry are currently participating in this effort. It is most likely that such a Web
Ontology language will range in power somewhere between the rather simple RDF Schema and the
rather rich Standard OIL language.

Other efforts are underway to define extensions for the ontology language, such as an ontology-
query language, or an extension with rules (which would allow for example role chaining, as done
in Horn logic).

4. Business Applications in Semantic Information Access

Tool development in On-To-Knowledge was strongly driven by several case studies. Some of them
started in the earliest stages of the project so that the project was geared towards practical demands
from the very beginning. The case studies also serve as a means to evaluate the project results. In
addition, a methodology for employing ontology-based tools for knowledge management was
developed and tested together with the case studies.

Information Search

Two of the case studies were carried out by Swiss Life. One of these approached the problem of
finding relevant passages in a very large document about the International Accounting Standard
(IAS) on the extranet (over 1000 pages). This document is used by accountants who need to know
certain aspects of the IAS accounting rules. As the IAS standard uses very strict terminology, it is
only possible to find relevant text passages when the correct terms are used in the query. Very often,
this leads to poor search results. With the help of the ontology extraction tool OntoExtract, an
ontology was automatically learned from the document. The ontology consists of 1,500 concepts
linked by 47,000 weighted semantic associations. It supports users in reformulating their initial
queries when the results fall short of expectations. This is done by offering terms from the ontology
that are strongly associated with (one of) the query terms used in the initial query. An evaluation of
user behaviour showed that 70% of the queries involved a reformulation step. On average, 1.5

4 http://www.daml.org.
5 http://www.w3c.org.

11

11

refinements were made. Thus, although the ontology is structurally quite simple, it greatly improves
search results. Another advantage to using a simple ontology is that it requires no manual effort to
build.

Skills Management

Swiss Life’s second case study is a skills management application that uses manually constructed
ontologies about skills, job functions, and education. These consist of 800 concepts with several
attributes, arranged into a hierarchy of specializations. There are also semantic associations between
these concepts. The skills management system makes it easy for employees to create in a personal
home page on the company's intranet that includes information about personal skills, job functions,
and education. The ontology allows a comparison of skills descriptions among employees, and
ensures the use of uniform terminology in skills descriptions and queries for employees with certain
skills. Moreover, the ontology can automatically extend queries with more general, more
specialized, or semantically associated concepts. This enables controlled extension of search results,
where necessary.

Exchanging knowledge in a virtual organization

The case study done by EnerSearch AB focuses on validating the industrial value of the project’s
results with respect to the needs of a virtual organization. The goal of the case study is to improve
knowledge transfer between EnerSearch's in-house researchers and outside specialists via the
existing website. The study also aims to help the partners from shareholding companies to obtain
up-to-date information about research and development results.

Figure 6. Automatically generated semantic structure maps of the EnerSearch website.

The main problem with the current website is that its search engine supports free text searches
rather than content-based information retrieval, which makes it fairly difficult to find information
on certain topics. To remedy this, the entire web site was annotated by concepts from an ontology
developed using semi-automatic extraction from documents on the EnerSearch’s current website.

12

12

The RDFferret search engine is used to extend free text searches to searches of annotations.
Alternatively, the Spectacle tool enables users to obtain search results arranged into topic
hierarchies, which can then be browsed. This offers users a more explorative route to finding the
information they need (see Figure 6).

The case study evaluation will start with pre-trial interviews of the users, followed by a test of the
complete system. The third and final step will then be the post trial interviews to evaluate the
improvements made. Three groups with different interests and needs will be involved in the
evaluation: (1) researchers from different fields, (2) specialists from the shareholders organization
and (3) outsiders from different fields.

Methodology

A methodology for employing ontology-based tools for knowledge management applications was
developed by applying an initial baseline methodology (cf. [Staab et al., 2001]) in the case studies
and continuously improving it with the insight gained from experience. This methodology provides
guidelines for introducing knowledge management concepts and tools into enterprises, helping
knowledge providers and seekers to present knowledge efficiently and effectively. In On-To-
Knowledge, ontologies are the core element. Thus, the methodology has a strong focus on ontology
development.

The approach consists of five major phases. It starts with a feasibility study to identify the parties
involved, to focus the domain for the ontology-based application and to support go/no-go decisions
for projects. During the kick-off phase, the requirement specification for the ontology-based
application is acquired. It contains, among other things, valuable knowledge sources (e.g. domain
experts identified during the feasibility study) and documents (e.g. index lists useful in building the
ontology). Through analysis of the knowledge sources, a baseline ontology is developed that usually
contains the most relevant concepts and relations of the focused domain and is modelled on a
conceptual level. During the next phase, the refinement, knowledge is elicited with domain experts,
which serves to enlarge the ontology with more fine-grained concepts and relations of the domain.
The approach ends with a formalization phase, where the refined ontology is transferred into a
formal representation language, such as OIL. This target ontology serves as a base for developing a
prototype application to evaluate the target ontology in the next phase, the evaluation. The
prototype helps to check whether the initial requirements from the kick-off phase are fulfilled. It
may be necessary to perform several refinement-evaluation cycles before all requirements are met,
which leads to the deployment of the ontology within the target application.

As the real world continues to change, so do the specifications for ontologies. To reflect these
changes, ontologies must be maintained frequently, as are other software components. One point
that we should stress here is that the maintenance of ontologies is primarily an organizational
process. Ontologies require strict rules for their update-delete-insert processes. We would
recommend that ontology engineer group changes to the ontology and initiate the switch-over to a
new version of the ontology after thoroughly testing possible effects to the application, viz.
performing additional cyclic refinement and evaluation phases.

5. Conclusions

The Web and company intranets have boosted the potential for electronic knowledge acquisition
and sharing. Given the sheer size of these information resources, there is a strategic need to move
up in the data – information – knowledge chain. On-To-Knowledge takes a necessary step in this
process by providing innovative tools for semantic information processing and thus for much more
selective, faster, and meaningful user access. This environment deals with three aspects:

13

13

� Acquiring ontologies and linking them to large amounts of data. For reasons of scalability, this
process must be automated based on information extraction and natural language processing
technology. To ensure quality, the process also requires human input in terms of building and
manipulating ontologies based on ontology editors.

� Storing and maintaining ontologies and their instances. We developed an RDF Schema
repository that provides database technology and simple forms of reasoning over web
information sources.

� Querying and browsing semantically enriched information sources. We developed semantically
enriched search engines, browsing and knowledge sharing support that makes use of machine
processable semantics of data.

The technology developed has been proven to be useful in a number of case studies. We can
improve information access in the large intranets of sizeable organizations. The technology has
been used to facilitate electronic knowledge sharing and re-use for customer relationship
management and knowledge management in virtual organizations.

We also encountered a number of shortcomings in our current approach. Ontologies help to
establish consensual terminologies that make sense to both sites. Computers are able to process
information based on their machine-processable semantics. Humans are able to make sense of that
information based on their knowledge of real-world semantics. Building ontologies that are a pre-
requisite for - and result of - the common understanding of large user groups is no trivial task. A
model or “protocol” for driving the network that maintains the process of evolving ontologies is the
real challenge for making the semantic web a reality. Most work on ontologies views them in terms
of an isolated theory containing a potentially large number of concepts, relationships, and
constraints that further detach formal semantics from them. To tap into the full potential advantages
they offer the semantic web, ontologies must be structured as interwoven networks that make it
possible to deal with heterogeneous needs in the communication processes that they are supposed to
mediate. Moreover, these ontologies need to shift over time because the processes they mediate are
based on consensual representation of meaning. It is the network of Ontologies and their dynamic
nature that make future research necessary. Actual challenges in the current work on ontologies are
what glue ontology networks together in space and time. Instead of a central, top-down process, we
require a distributed process of emerging and aligned ontologies. Most existing technology focuses
on building ontologies as graphs based on concepts and relationships. Our current understanding is
far below par when it comes to proper methodological and tool support for building up networks,
where the nodes represent small and specialized ontologies. This is especially true of the noisy and
dynamically changing environment that the web is and will continue to be.

References

[Chaudhri et al., 1998] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. Rice: OKBC: A
programmatic foundation for knowledge base interoperability. In Proceedings of the 15th Nat. Conference
on Artificial Intelligence (AAAI’98), 1998.

[Corcho & Gomez Perez, 2000] O. Corcho and A. Gomez Perez: A roadmap to ontology specification
languages. In R. Dieng and O. Corby (eds.), Proceedings of the 12th International Conference on
Knowledge Engineering and Knowledge Management (EKAW’00), volume 1937 of LNAI, 80–96. Springer
Verlag, 2000

[Broekstra et al., 2000] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I. Horrocks:
Enabling knowledge representation on the web by extending RDF schema. In Proceedings of the Tenth
International World Wide Web Conference (WWW10), Hong Kong, May 2001.

[Broekstra et al., to appear] J. Broekstra, A. Kampman, F. van Harmelen. Sesame: An Architecture for Storing
and Querying RDF Data and Schema Information. In [Fensel et al., to appear].

14

14

[Berners-Lee et al., 2001] T. Berners-Lee, J. Hendler, and O. Lassila: The Semantic Web, Scientific
American, May 2001.

[Engels et al., 2000] R. Engels and B.A. Bremdal. CORPORUM: A Workbench for the Semantic Web.
Semantic Web Mining workshop. PKDD/ECML – 01. Freiburg, Germany, 2001.

[Fensel, 2001] D. Fensel: Ontologies: Silver Bullet for Knowledge Management and Electronic Commerce.
Springer-Verlag, Berlin, 2001.

[Fensel et al., 2000] D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M. Klein: OIL in
a nutshell. In Knowledge Acquisition, Modeling, and Management, Proceedings of the European
Knowledge Acquisition Conference (EKAW-2000), R. Dieng et al. (eds.), Lecture Notes in Artificial
Intelligence, LNAI 1937, Springer-Verlag, October 2000.

[Fensel et al., to 2001] D. Fensel, I. Horrocks, F. van Harmelen, D. McGuinness, and P. F. Patel-Schneider:
OIL: Ontology Infrastructure to Enable the Semantic Web, IEEE Intelligent System, 16(2), 2001.

[Fensel et al., to appear] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster (eds.): Semantic Web
Technology, MIT Press, Boston, to appear 2002.

[Harmelen & Horrocks, 2000] F. van Harmelen and I. Horrocks: Questions and answers about OIL. IEEE
Intelligent Systems, 15(6):69–72, 2000.

[Karp et al., 1999] P. D. Karp, V. K. Chaudhri, and J. Thomere. XOL: An XML-based ontology exchange
language. Version 0.3, July 1999.

[Staab et al., 2000] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche, H.-P. Schnurr, R.
Studer, and Y. Sure. Semantic community web portals. In WWW9—Proceedings of the 9th International
World Wide Web Conference, Amsterdam, The Netherlands, May, 15-19, 2000. Elsevier, 2000.

[Staab et al., 2001] S. Staab, H.-P. Schnurr, R. Studer, and Y. Sure: Knowledge Processes and Ontologies,
IEEE Intelligent Systems, 16(1), January/February 2001.

